
Information Retrieval in a Coq Proof Library

using Type Isomorphisms

David Delahaye?

Project Coq
INRIA-Rocquencourt??

Abstract. We propose a method to search for a lemma in a Coq proof
library by using the lemma type as a key. The method is based on the
concept of type isomorphism developed within the functional program-
ming framework. We introduce a theory which is a generalization of the
axiomatization for the simply typed λ-calculus (associated with Closed
Cartesian Categories) to an Extended Calculus of Constructions with
a more Extensional conversion rule. We show a soundness theorem for
this theory but we notice that it is not contextual and requires "ad hoc"
contextual rules. Thus, we see how we must adapt this theory for Coq
and we de�ne an approximation of the contextual part of this theory,
which is implemented in a decision procedure.

1 Introduction

The problem of easily �nding software components in a library is fundamental.
It is connected to code reusability. Indeed, a reusable code is one which is not
only su�ciently generic but one which can also be found quickly when needed1.
This second component is often neglected because it is considered, wrongly, not
to be very theoretical. Consequently, most current search tools are nothing more
than identi�ers indexes in which we hope systematically that the name given to
the required function is su�ciently explicit for it to be found quickly. If you are
the single author of the library you scan, the speed of your search depends only
on your own memory, but if you are a co-author or not an author at all then
the task may be very tedious. Thus and in a general way, we waste time in this
approximate search which, if it fails, obliges the user to write code which may
already exist. A typical example is that of the Caml function list_it2 which,
as shown in table 1, has four di�erent names in other ML versions.

? David.Delahaye@inria.fr, http://coq.inria.fr/�delahaye/.
?? INRIA-Rocquencourt, domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex,

France.
1 In this regard, A. Mili, R. Mili and R. T. Mittermeir give a broad survey of soft-
ware storage and retrieval methods in [15], where "software" is not necessarily only
executable code.

2 This is an abbreviated version of an example originally due to Mikael Rittri in [16].



Language Name Type
LCF ML ([8]) itlist ∀αβ.(α → β → β)→ List(α)→ β → β
Caml ([12]) list_it ∀αβ.(α → β → β)→ List(α)→ β → β
Haskell ([9]) foldr ∀αβ.(α → β → β)→ β → List(α)→ β
SML of New Jersey ([3]) fold ∀αβ.(α× β → β)→ List(α)→ β → β
Edinburgh SML ([5]) fold_right ∀αβ.(α× β → β)→ β → List(α)→ β

Table 1. The list_it in Caml.

As can be seen, an identi�er is totally insu�cient to allow a powerful search.
The idea is thus to take the type as a search pattern and to carry out compar-
isons modulo a certain equivalence. Then, the following question arises: when
are two types equivalent? There is no standard answer to this question. It de-
pends on what we want to identify. A �rst naive choice could be to take syn-
tactic equality. But this option is too restrictive as shown again by the ex-
ample of list_it in Caml (see table 1) which has four distinct types in the
various ML. So, the equivalence must be broader. Some work by Mikael Rit-
tri ([16]) highlighted that the most favourable concept for search in libraries is
that of isomorphic types. This concept, formalized and studied for many years
by Roberto Di Cosmo, Giuseppe Longo, Kim Bruce and Sergei Soloviev (see,
for example, [17], [6] and [7]), was implemented in a tool called CamlSearch,
developed by Jerôme Vouillon and Julien Jalon ([18]) at the LIENS in 1994.
CamlSearch extends the theory used by Mikael Rittri (typically the seven ax-
ioms for Closed Cartesian Categories) to polymorphism and deals with uni�ca-
tion. Another study by Maria-Virginia Aponte, Roberto Di Cosmo and Cather-
ine Dubois ([1], [2]) tries to include the modules of Objective Caml ([13]). The
objective of this work is to make such a tool for Coq3 ([4]).

First of all, we present the problem framework. Next, we see the basic con-
cepts relating to type isomorphisms in order to build, thereafter, a theory in a
type theory with extensional rules. From there, we adapt this theory to Coq and
we de�ne a decision procedure. Finally, we discuss our implementation and we
provide some examples which give an idea about its use and its performances.

2 Framework

2.1 Extensions

The idea is to extend the theories built for programming languages to type
theory. We do not aim to capture all type categories but only those which may
be useful. So, it is not only a practical approach in the �eld of logic but also a
theoretical study.

3 From another perspective, Thomas Kolbe and Christoph Walther propose, in [10]
and [11], to generalize computed proofs to produce schemes (for proofs and lemmas)
which can match new lemmas and so can be reused.



An initial and easy extension is to have free polymorphism. Indeed,
CamlSearch can only deal with an ML-polymorphism (quanti�ers on type vari-
ables appear only in the head to make type inference decidable). This restriction
has to be lifted and, for example, if we look for a Gödel recursor for type T , we
expect that the two following types can be identi�ed:

T → (nat→ T → T )→ nat→ T
nat→ T → (nat→ T → T )→ T

Next, it is quite natural to deal with dependent types although it makes
the problem be much more di�cult for reasons which will become clear. In this
task, we must be careful with variable renamings and especially with variable
bindings. A typical example with dependent types could be the following lemma
on integers:

∀n, m, p, q : Z.n ≤ m→ p ≤ q → (n + p) ≤ (m + q)

The user may want to move the variables p and q to the right of the subterm
n ≤ m (because they do not occur) and so, he/she can give the following type
to hit the previous lemma:

∀n, m : Z.n ≤ m→ ∀p, q : Z.p ≤ q → (n + p) ≤ (m + q)

In addition to dependent products, we may want to capture dependent tu-
ples. Usual existential quanti�ers are concerned but, in a theory with primitive
inductive types, we can de�ne other existential quanti�ers, which are inductive
types with one constructor and without a recursive position. For example, we
can specify the Euclidean division using the following inductive type:

type diveucl (a, b : nat) =
divex : ∀q, r : nat.b > r → a = (q ∗ b) + r

Where divex is the single constructor of diveucl. Then, the theorem is ex-
pressed as follows:

∀b : nat.b > 0→ ∀a : nat.(diveucl a b)

Here, diveucl plays the role of a customized existential quanti�er, and the
user, who does not know the existence of diveucl, certainly expects to �nd the
theorem by using the usual existential quanti�ers to express his/her type, which
may be:

∀a, b : nat.b > 0→ ∃q, r : nat.(a = (q ∗ b) + r) ∧ (b > r)



2.2 Limitations

In the present work, there are some features we do not want to deal with and
this leads to limitations which we must identify.

First of all, the user has to know the vocabulary or a part of the vocabulary
used for the semantical notions he/she wants to look for. For example, if he/she
wants to search for theorems on natural numbers, he/she has to know that the
keyword for natural numbers is nat and not N or natural; likewise, he/she has to
be careful with the operators on natural numbers like the addition which is plus
and not plus_nat or nat_plus. So, some queries may be di�cult without an
oracle which gives signs to the user to express correctly his/her formulae. This
task could be made easier with a vocabulary system (like in Mizar) extracted
from each module (typically a �le in Coq) and combined with a command which
gives the list of the modules.

We want to avoid constant expansion. The reason is that we want to keep
an acceptable level of complexity. We must not forget that this procedure may
be applied to large developments (industrial or mathematical) where complexity
must be contained.

For the same reason, we dismiss the possibility of congruences. However, we
agree that unpleasant surprises may occur without this option. There are many
examples which show that congruences are important but we can choose a case
where equality occurs e.g. the associativity of real numbers:

∀r1, r2, r3 : R.(r1 + r2) + r3 = r1 + (r2 + r3)

Without symmetry on equality, if the user inverts the two members of the
equality in his/her search then he/she will not �nd anything. Equality is not
the only operator we may want to deal with, structure operators like addition
or propositional operators like conjunction are included within this context.

We do not want to deal with pattern-matching here. That must be the result
of another study. From this possibility, we may expect that, in the context where
A, B, C and D are propositional variables, the type A→ Ω → D where Ω is a
metavariable can capture the following types:

A→ B ∧ C → D
A→ B → C → D
A→ C → B → D

In a general way, parts of lemmas could be forgotten or hidden and this
facility would certainly be used very often.

Finally, we do not want to capture general inductive types. Just as for
pattern-matching, we consider that it must be the subject of another study,
which can only be an abstraction with respect to the constructor names or
something more semantic.



3 Isomorphisms of types

This section gives the basic de�nitions and concepts, mostly formalized in [7].
From these notions, it is possible to build a theory (axiomatization) which char-
acterizes a certain class of isomorphisms for a given language.

In a natural way, we can say that two types are isomorphic if there exist two
functions of conversion, which are de�nable in the reference language and which
allow us to pass from one type to the other one and vice versa. More precisely,
we have the following de�nition:

De�nition 1 (De�nable isomorphisms, invertible terms). Two types A
and B are de�nably isomorphic (A ∼=d B) if and only if there exist the functions
(λ-terms) M : A → B and N : B → A such that M ◦ N =L λx : B.x and
N ◦M =L λx : A.x where =L is an equality over the terms. The terms M and
N are said to be invertible.

This de�nition is parametrized by the choice of =L which depends on the
isomorphisms we want to deal with. In general, =L contains βη-convertibility,
projections, surjective-pairing and void substitution for terms in unit (terminal
object).

Beyond this syntactic concept of type isomorphisms, we can obtain a more
semantic view by considering the models of the language. Thus, two types are
isomorphic in a speci�c modelM if their interpretations are isomorphic inM, in
the traditional sense (i.e., there exist, in the model, two invertible functions f and
g between them). Two types are semantically isomorphic if they are isomorphic
for every model of the calculus.

There are many languages where the two notions of isomorphisms correspond.
[7] gives some examples like the simply typed λ-calculus, the system F or the
simply typed λ-calculus with Cartesian product and/or unit.

4 Formalism and theory

In the above, the de�nitional equality =L is essentially β-conversion extended
by more extentional simpli�cations like η-conversion or surjective pairing. Up to
now, the main reason for considering these additional reductions was to make the
theory complete, that is to have the syntactical and semantical notions coincide.
In the case of calculi with dependent types, the situation changes. Namely, these
generalized η-reductions become necessary not only for a matter of completeness,
but also, more drastically, to be able to build up a theory compatible with the
typing.

In this section, we will point out two di�culties due to the presence of de-
pendent types:

1. In order to de�ne the syntactic notion of isomorphism, we will have to explic-
itly keep track of the conversion function. For instance, given two types A and
B and the corresponding functions σ : A → B and τ : B → A, it makes no



sense to consider an isomorphism between Πx : A.C and Πx : B.C; there is
no reason for having both these two types well formed at the same time. How-
ever, we can exhibit functions between Πx : A.C and Πx : B.C[x← (τ x)].

2. Furthermore, in the general case, the condition that σ and τ commute ap-
pears also to be necessary in order to build well typed equations.

Thus, this section is devoted to the presentation of a generalization of the
de�nition of type isomorphisms for an Extended Calculus of Constructions with
a more Extensional conversion rule (ECCE for short).

4.1 De�nition of ECCE

ECCE is an extension of the Calculus of Constructions with predicative universes,
Σ-types, unit and extensionality rules. The terms of ECCE can be inductively
de�ned as the smallest set verifying the following clauses:

� Prop and Typei with i ∈ N are terms;
� Variables are terms;
� unit and () are terms;
� If A, B, M and N are terms then Πx : A.B, Σx : A.B, λx : A.M ,

(M,N)Σx:A.B , (π1 M), (π2 M) and M N are terms.

Terms are identi�ed modulo α-conversion. We also denote Πx : A.B and
Σx : A.B, respectively A → B and A × B when x 6∈ B. Reduction (→ ) and
conversion (' ) are de�ned as usual from the following one-step rules:

(λx : A.M) N → 1M [x← N ] (β)

λx : A.M x→ 1M if x 6∈M (η)

(πi (M1,M2)Σx:A.B)→ 1Mi (i = 1, 2) (P )

((π1 M), (π2 M))Σx:A.B → 1M (SP )

M → 1() if Γ `M : unit (U)

Prop and Typei are called universes and there exists an inclusion between
them. This type inclusion induces a type cumulativity characterized by the par-
tial order � over the terms, which is the smallest relation such that:

� Prop � Type0 � Type1 � ...;
� if A � A′ and B � B′ then

Πx : A.B � Πx : A′.B′ and Σx : A.B � Σx : A′.B′.

Typing contexts are lists of expressions of the form x : A where x is a variable
and A is a term. The empty context is the empty list noted []. A judgement is
either Γ is well formed or Γ ` t : T where Γ is a context and, t and T are terms.
FV (Γ ), where Γ is a context of the form [x0 : A0; ...;xi;Ai; ...;xn : An], denotes
the union of xi and FV (Ai).

The inference rules of ECCE are given in appendix A. The term M is well
typed under Γ if and only if Γ `M : A is derivable for an A.

ECCE can be seen as an extension of the Extended Calculus of Constructions
(ECC) [14] with unit and extensionality rules.



4.2 Equations

Now, we can give equations over the terms of ECCE which are considered to
be valid isomorphisms of ECCE. These equations deal with properties about
function types, Σ-types and unit, which we used to handle, in a non-dependent
way, in functional programming. If A, B and C are terms then the equations are
the following:

1. A = B if A ' B
2. Σx : A.B = Σx : B.A if x 6∈ FV (A,B)
3. Σx : (Σy : A.B).C = Σx : A.Σy : B[y ← x].C[x← (x, y)]
4. Πx : (Σy : A.B).C = Πx : A.Πy : B[y ← x].C[x← (x, y)]
5. Πx : A.Σy : B.C = Σy : (Πx : A.B).Πx : A.C[y ← (y x)]
6. Σx : A.unit = A
7. Σx : unit.A = A[x← ()]
8. Πx : A.unit = unit
9. Πx : unit.A = A[x← ()]

This system is called AxECCE. We consider only well typed types, that is to
say, for Γ , if A = B is an instance of an equation of AxECCE then Γ ` A : s and
Γ ` B : s, where s ∈ S with S, the set of the universes.

If we exclude the axioms 1 (conversion) and 7 (() substitution when the wit-
ness of a Σ-type is of type unit), and if we ignore dependencies, we can recognize
the seven axioms that Sergei Soloviev proved complete for Closed Cartesian Cat-
egories [17].

4.3 Theory

With dependencies, we guess that the theory built on AxECCE cannot be con-
textual, i.e. if we consider the terms T , A and B where A is a subterm of T
and where A = B, then we do not always have T = T ′ where T ′ is the term T
for which B is substituted for some occurrences of A. Indeed, in AxECCE, for Γ ,
if the left member is well typed (under Γ ) then the right member will be too.
This property is not valid for the contextual closure, i.e. the relation including
the axioms of AxECCE and which, given the terms T , T ′, A, B, contains couples
(T, T ′) such that A = B, A is a subterm of T and T ′ is the term T where B is
substituted for some occurrences of A. To show why, let us de�ne the notion of
term context:

� terms are contexts;
� [] is a context;
� If A, B, M and N are contexts then Πx : A.B, Σx : A.B, λx : A.M ,

(M,N)Σx:A.B , (π1 M), (π2 M) and M N are contexts.

If C is a context and A a term, C[A] denotes the term C where A is subsituted
for []. A is called the argument of C.

Now, let us consider the following context:



C = Πf : [].Πc : (Σy : A.B).(f c)

With C and the terms A, B and C, and if we suppose that, for Γ ,
Γ ` A : Typei, Γ , y : A ` B : Typei and Γ , x : (Σy : A.B) ` C : Typei

are derivable then we can build the term C[Πx : (Σy : A.B).C] which is well
typed (under Γ ). Using axiom 4 (curry�cation) of AxECCE on the argument of C,
we notice that the resulting term is not well typed (under Γ ).

To preserve typing, we have to modify C as follows:

C′ = Πf : [].Πc : (Σy : A.B).(f (π1 c) (π2 c))

With C′, the following equation is valid (deduced by AxECCE) and well typed:

C[Πx : (Σy : A.B).C] = C′[Πx : A.Πy : B[y ← x].C[x← (x, y)]]

C has been modi�ed in the following way:

C′= Πf : [].Πc : (Σy : A.B).(f (π1 c) (π2 c))
= Πf : [].Πc : (Σy : A.B).

(((λf : (Πx : A.Πy : B[y ← x].C[x← (x, y)]).λx : (Σy : A.B).
f (π1 x) (π2 x)) f) c)

= Πf : [].Πc : (Σy : A.B).((τ f) c)

Where τ is the invertible term from the right-hand term to the left-hand one
of axiom 4 of AxECCE.

This example gives us several indications. Some contexts cannot be crossed
without modi�cations and these modi�cations involve invertible terms. Thus,
to build the theory over AxECCE, which will be called ThECCE, we have to justify
syntactically the axioms of AxECCE, that is to say, to give the associated invertible
terms, and we have to de�ne dedicated contextual inference rules to make the
equations applicable to the contexts.

We use the following notation:

A = B(
σ
τ

)
Where, for Γ , Γ ` σ : A→ B and Γ ` τ : B → A. We also note this equation

as follows: σ : A = B : τ .
For instance, axiom 4 of AxECCE will be completed as follows:

Πx : (Σy : A.B).C = Πx : A.Πy : B[y ← x].C[x← (x, y)](
λf : (Πx : (Σy : A.B).C).λx : A.λy : B[y ← x].f (x, y)

λf : (Πx : A.Πy : B[y ← x].C[x ← (x, y)]).Πx : (Σy : A.B).f (π1 x) (π2 x)

) (ThECCE
ΣCur )

And, to cross Π-expressions to the left, we have:

A = A′(
σ
τ

)
Πx : A.B = Πx : A′.B[x← (τ x)](

λf : (Πx : A.B).λx : A′.f (τ x)
λf : (Πx : A′.B[x ← (τ x)]).λx : A.f (σ x)

) (ThECCE
ΠL )



The other axioms and inference rules of ThECCE are given in appendix B.
For A, B, σ and τ , four terms, the equation σ : A = B : τ is valid, which is
noted Γ ` σ : A = B : τ if and only if Γ ` A : s, Γ ` B : s, with s ∈ S, and
σ : A = B : τ is derivable. For two terms A and B, an equation A = B is valid,
which is noted Γ ` A = B, if there exist σ and τ such that Γ ` σ : A = B : τ .

Regarding the deduction rules, we have to notice that there is no rule for
contexts which are λ-expressions, pairs or applications because these contexts
cannot be crossed.

4.4 Soundness

The soundness theorem of ThECCE is expressed as follows:

Theorem 1 (Soundness). If Γ ` σ : A = B : τ then Γ ` σ : A → B,
Γ ` τ : B → A, σ ◦ τ ' λx : B.x and τ ◦ σ ' λx : A.x.

Proof. By induction on the derivation of Γ ` σ : A = B : τ .

5 Adaptation to Coq

5.1 Restriction

To use ThECCE in Coq, a natural way consists of getting rid of the extensional
rules in reduction and conversion. Indeed, if we leave to one side δ-reduction
(expansion of constants in an environment) and ι-reduction (reduction for prim-
itive inductive types), Coq is only concerned by β-reduction. Also, we have to
adapt the soundness theorem by substituting conversion with extensional rules
for conversion (in this case, we use isomorphisms proved outside the formalism).

This restriction is not strong enough to ensure the soundness theorem. For
example, let us consider the rule ThECCE

ΠL . We suppose we have Γ such that
Γ ` σ : A = A′ : τ and such that Πx : A.B and Πx : A′.B[x ← (τ x)] are
of type s with s ∈ S. The second invertible term of the conclusion is of type
Πx : A′.B[x ← (τ x)] → Πx : A.B[x ← (τ (σ x))] and the term (τ (σ x))
cannot always be reduced to x due to the absence of extensional rules. So, some
invertible terms are not of the expected type and this invalidates the soundness
theorem.

The problem is that invertible terms can appear in types. One solution is to
prevent such occurences, that is to say, to take out the rules ThECCE

ΠL and ThECCE
ΣL

except for ThECCE
β which creates reductible redexes.

So, this means that, to implement ThECCE in Coq, we must consider a subset
of this theory with a conversion rule based only on β-reduction and with a
restriction on the use of rules which introduce invertible terms in types.

5.2 Σ-types and unit

In Coq, we consider Σ-types as inductive types with one constructor without a
recursive position and without any constraint on their parameters. unit is any
inductive type with one empty constructor.



5.3 A decision procedure

To implement ThECCE for Coq, we extract a rewriting system, called RCoq, from
the theory4. The rules of RCoq are given in appendix C.

An immediate consequence of the previous restriction is that RCoq is not
con�uent. For example, if A and B are terms, the following critical pair cannot
be reduced:

Πx : unit.Σy : A.B

(RCoq
ΠUnl)↙ ↘ (RCoq

ΠDis)

(Σy : A.B)[x← tt] Σy : (Πx : unit.A).Πx : unit.B[y ← (y x)]

≡ ↓ (RCoq
ΠUnl) + (RCoq

ΣR )

Σy.A[x← tt].B[x← tt] Σy : (Πx : unit.A).B[y ← (y x)][x← tt]

≡

Σy : (Πx : unit.A).B[y ← (y tt)]

Thus, to have canonical normal form, we de�ned a reduction strategy called
ST RCoq and based on RCoq. This strategy respects the following partial order:

RCoq
ΣAss =RCoq RCoq

ΣCur >RCoq RCoq
∗U∗ >RCoq RCoq

ΠDis

This means that the rules RCoq
ΣAss and RCoq

ΣCur must be used equally before
the rules RCoq

∗U∗ which in turn must be used equally before the rule RCoq
ΠDis.

We can show that ST RCoq is con�uent and strongly normalizable. Due to
the restriction, the normal forms are a little complicated and of the following
form:

Σ−→x : −→X.T

Where there is no β-redex in {
−→
X , T} and:

� Xi is such that: Π−→yi : −→Yi .Σ−→zi : −→Zi.Ui with −→yi = −→0 ⇒ −→zi = −→0 ,
−→yi = −→0 ⇒ Ui 6= unit and where there is no Σ at the root of Ui;

� T is as follows: T = Π−→v : −→V .W where there is no Σ at the root of Vi, W
and where Vi 6= unit, W 6= unit.

Now, we can give the de�nition of the decision procedure:

De�nition 2 (Decision procedure). We call DecCoq the decision procedure
which, for two types, ST RCoq-normalizes them, then compares them modulo
permutation of the Σ-components.

We have some usual and expected properties:

4 This mainly consists in orienting some rules of ThECCE and ignoring the others.



Theorem 2 (Soundness and termination). DecCoq is sound for ThECCE and
DecCoq terminates.

Proof. The proof is quite trivial. The normalization uses the rules of ST RCoq,
that is to say, rules of RCoq, which are extracted from ThECCE. The comparison
uses an axiom which can be deduced from ThECCE. For the termination, we
know that ST RCoq is strongly normalizable and that permutations on a �nite
sequence are �nite.

Of course, DecCoq is not complete for ThECCE because we do not allow some
rules to use "left-contextual" rules. However, DecCoq is a little more than the
contextual part of ThECCE because β-reduction can occur everywhere.

6 Implementation and examples

The implementation we carried out for Coq is called SearchIsos5. In fact, there
are two tools: one inside the toplevel of Coq, which scans the current context, and
another standalone tool, called Coq_SearchIsos, which scans the whole standard
library of Coq.

In general, we suppose that users would use SearchIsos for tiny and trivial
examples. Indeed, most of the time, users are interested in �nding lemmas mod-
ulo α-conversion and permutation in Π-expressions. For instance, we may have
such requests such as the following6:

Coq_SearchIsos < Time SearchIsos (A:Prop)A\/~A.
#Classical_Prop#--* [classic : (P:Prop)P\/~P]
Finished transaction in 1 secs (0.6u,0s)

Coq_SearchIsos < Time SearchIsos (b:bool)b=false->b=true->False.
#Bool#--* [eq_true_false_abs : (b:bool)b=true->b=false->False]
Finished transaction in 1 secs (0.716666666667u,0s)

As expected, possibilities about Σ-types are quite powerful. For example, we
can hide the Archimedian axiom of the real numbers in an inductive type and,
to �nd it again, we can use usual existential quanti�ers, which are much more
natural:

Coq < Require Reals.

Coq < Inductive Tarchi [r:R]:Set:=
Coq < CTarchi:(n:nat)(gt n O)->(Rgt (INR n) r)->(Tarchi r).
Tarchi_ind is defined
Tarchi_rec is defined
Tarchi_rect is defined
Tarchi is defined
5 See [4] for documentation.
6 For all these tests, we used a PWS 500 Digital-Alpha station with bytecode.



Coq < Axiom archi:(r:R)(Tarchi r).
archi is assumed

Coq < Time SearchIsos (r:R){n:nat|(gt n O)/\(Rgt (INR n) r)}.
#--* [archi : (r:R)(Tarchi r)]
Finished transaction in 0 secs (0.266666666667u,0s)

As concerns unit, we must not forget that it includes all the inductive types
with one empty constructor. So, the following result is not surprising:

Coq_SearchIsos < Time SearchIsos unit.
#Datatypes#<unit>#tt:unit
#Logic#<True>#I:True
#Logic_Type#<UnitT>#IT:UnitT
Finished transaction in 0 secs (0.516666666667u,0s)

In fact, we think that users are also very interested in congruences and the
use of metavariables. We have not yet implemented these possibilities but we
plan to do so soon.

7 Conclusion

7.1 Summary

In this work, we have achieved three goals:

� we have developed a theory ThECCE with "ad hoc" contextual rules, which is
sound for ECCE;

� we have made contextual restrictions on ThECCE to build a decision procedure
DecCoq which is sound for ThECCE and which is an approximation of the
contextual part of ThECCE;

� we have implemented DecCoq in a tool called SearchIsos.

7.2 Future work

Several aspects remain to be explored:

� subsitution to the left of an anonymous binder (when Π is a → ): this
weakens the restrictions on the contextual rules and we capture types users
may expect to capture;

� introduction of congruences: this possiblity seems to have priority. Indeed,
for example, SearchIsos must deal with symmetry or associativity of some
operators;

� pattern-matching: just like congruences, this must be implemented quite
quickly. SearchIsos could then subsume the current command Search which
uses a basic pattern-matching to �nd all the lemmas with a certain identi�er
as head-constant in their conclusion;



� inductive types: as we saw previously, this can only be a kind of α-conversion
with respect to constructor names or an identi�cation which is more semantic
(but di�cult to decide).

This kind of tool could also be useful for automated theorem proving, where
the search of a given lemma would be done modulo type isomorphisms. In this
perspective, invertible terms would have to be provided.

References

1. Maria-Virginia Aponte and Roberto Di Cosmo. Type isomorphisms for module
signatures. In Programming Languages Implementation and Logic Programming
(PLILP), volume 1140 of Lecture Notes in Computer Science, pages 334�346.
Springer-Verlag, 1996.

2. Maria-Virginia Aponte, Roberto Di Cosmo, and Catherine Dubois. Signature sub-
typing modulo type isomorphisms, 1998.
http://www.pps.jussieu.fr/�dicosmo/ADCD97.ps.gz.

3. Andrew W. Appel et al. Standard ML of New Jersey User's Guide. New Jersey,
1998.
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/index.html.

4. Bruno Barras et al. The Coq Proof Assistant Reference Manual Version 6.3.1.
INRIA-Rocquencourt, May 2000.
http://coq.inria.fr/doc-eng.html.

5. Dave Berry et al. Edinburgh SML. Laboratory for Foundations of Computer
Science, University of Edinburgh, 1991.
http://www.lfcs.informatics.ed.ac.uk/software/.

6. Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of
type. In Mathematical Structures in Computer Science, volume 2(2), pages 231�
247, 1992.

7. Roberto Di Cosmo. Isomorphisms of Types: from λ-calculus to information re-
trieval and language design. Progress in Theoretical Computer Science. Birkhauser,
1995. ISBN-0-8176-3763-X.

8. M. J. C. Gordon et al. A metalanguage for interactive proof in LCF. In 5th POPL,
ACM, 1978.

9. Simon Peyton Jones et al. Haskell 98, February 1999.
http://www.haskell.org/de�nition/.

10. Thomas Kolbe and Christoph Walther. Adaptation of proofs for reuse. In Adap-
tation of Knowledge for Reuse, AAAI Fall Symposium, 1995.
http://www.aic.nrl.navy.mil/�aha/aaai95-fss/papers.html#kolbe.

11. Thomas Kolbe and Christoph Walther. Proof management and retrieval. In Work-
ing Notes of the IJCAI Workshop, Formal Approaches to the Reuse of Plans,
Proofs, and Programs, 1995.
http://www.informatik.uni-freiburg.de/�koehler/ijcai-95/ijcai-ws/kolbe.ps.gz.

12. Xavier Leroy. The Caml Light system, documentation and user's guide Re-
lease 0.74. INRIA-Rocquencourt, December 1997.
http://caml.inria.fr/man-caml/index.html.

13. Xavier Leroy et al. The Objective Caml system release 3.00. INRIA-Rocquencourt,
April 2000.
http://caml.inria.fr/ocaml/htmlman/.



14. Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, July 1990.

15. A. Mili, R. Mili, and R. T. Mittermeir. A survey of software reuse libraries. In
Annals of Software Engineering, volume 5, pages 349�414, 1998.

16. Mikael Rittri. Using types as search keys in function libraries. In Journal of
Functional Programming, volume 1(1), pages 171�89, 1991.

17. Sergei Soloviev. The category of �nite sets and cartesian closed categories. In
Journal of Soviet Mathematics, volume 22(3), pages 154�172, 1983.

18. Jérôme Vouillon and Julien Jalon. CamlSearch. Master's thesis, LIENS, 1994.
http://caml.inria.fr/contribs-eng.html.



A Inference rules of ECCE

[] is well formed (ECCECxt0)

Γ ` A : Typei x 6∈ FV (Γ )
Γ , x : Ai is well formed (ECCECxt1)

x ∈ Γ Γ is well formed
Γ ` x : A (ECCEVar)

Γ is well formed
Γ ` Prop : Type0 (ECCEProp)

Γ is well formed
Γ ` Typei : Typei+1 (ECCEUniv)

Γ is well formed
Γ ` unit : Prop (ECCEUnit)

Γ is well formed
Γ ` () : unit (ECCE())

Γ , x : A ` P : Prop
Γ ` Πx : A.P : Prop (ECCEProd0)

Γ ` A : Typei Γ , x : A ` B : Typei

Γ ` Πx : A.B : Typei (ECCEProd1)

Γ , x : A `M : B
Γ ` λx : A.M : Πx : A.B (ECCELam)

Γ `M : Πx : A.B Γ ` N : A
Γ `M N : B[x← N ] (ECCEApp)

Γ ` A : Typei Γ , x : A ` B : Typei

Γ ` Σx : A.B : Typei (ECCESig)

Γ `M : A ΓN : B[x←M ] Γ , x : A ` B : Typei

Γ ` (M,N)Σx:A.B : Σx : A.B (ECCEPair)

Γ `M : Σx : A.B
Γ ` (pi1 M) : A (ECCEProj0)

Γ `M : Σx : A.B
Γ ` (pi2 M) : B (ECCEProj1)

Γ `M : A Γ ` A′ : Typei A ' A′

Γ `M : A′ (ECCEConv)

Γ `M : A Γ ` A′ : Typei A ≺ A′

Γ `M : A′ (ECCECum)



B Axioms and inference rules of ThECCE

A = B(
λx : A.x
λx : B.x

) if A ' B (ThECCE
β )

Σx : unit.A = A[x← tt](
λc : (Σx : unit.A).(π2 c)

λa : A[x ← tt].(tt, a)

) (ThECCE
ΣUL )

Σx : A.B = Σx : B.A(
λc : (Σx : A.B).(π2 c, π1 c)
λc : (Σx : B.A).(π2 c, π1 c)

) if x 6∈ FV (A,B) (ThECCE
ΣCom)

Σx : unit.A = A[x← tt](
λc : (Σx : unit.A).(π2 c)

λa : A[x ← tt].(tt, a)

) (ThECCE
ΣUL )

Σx : (Σy : A.B).C = Σx : A.Σy : B[y ← x].C[x← (x, y)](
λz : (Σx : (Σy : A.B).C).(π1 (π1 z), (π2 (π1 z), π2 z))

λz : (Σx : A.Σy : B[y ← x].C[x ← (x, y)]).((π1 z, π1 (π2 z)), π2 (π2 z))

) (ThECCE
ΣAss )

Πx : A.unit = unit(
λf : (Πx : A.unit).tt

λu : unit.λx : A.tt

) (ThECCE
ΠUR )

Πx : (Σy : A.B).C = Πx : A.Πy : B[y ← x].C[x← (x, y)](
λf : (Πx : (Σy : A.B).C).λx : A.λy : B[y ← x].f (x, y)

λf : (Πx : A.Πy : B[y ← x].C[x ← (x, y)]).Πx : (Σy : A.B).f (π1 x) (π2 x)

) (ThECCE
ΣCur )

Πx : unit.A = A[x← tt](
λf : (Πx : unit.A).f tt

λa : A[x ← tt].λx : unit.a

) (ThECCE
ΠUL )

Πx : A.Σy : B.C = Σy : (Πx : A.B).Πx : A.C[y ← (y x)](
λf : (Πx : A.Σy : B.C).(Πx : A.(π1 (f x)), Πx : A.(π2 (f x)))

λc : (Σy : (Πx : A.B).(Πx : A.C[y ← (y x)]).λx : A.((π1 c) x, (π2 c) x)

) (ThECCE
ΠDis )

(ThECCE
Ref )

A = A(
λx : A.x
λx : A.x

)
A = A′(

σ
τ

)
(ThECCE

ΠL )
Πx : A.B = Πx : A′.B[x← (τ x)](

λf : (Πx : A.B).λx : A′.f (τ x)
λf : (Πx : A′.B[x ← (τ x)]).λx : A.f (σ x)

)
A = B(

σ
τ

)
(ThECCE

Sym )
B = A(

τ
σ

)
A = A′(

σ
τ

)
(ThECCE

ΣL )
Σx : A.B = Σx : A′.B[x← (τ x)](

λc : (Σx : A.B).(σ (π1 c), π2 c)
λc : (Σx : A′.B[x ← (τ x)]).(τ (π1 c), π2 c)

)
A = B(

σ
τ

) B = C(
σ′

τ′
)

(ThECCE
Trs )

A = C(
σ′ ◦ σ

τ ◦ τ′
)

A = A′(
σ
τ

)
(ThECCE

ΠR )
Πx : B.A = Πx : B.A′(
λf : (Πx : B.A).λx : B.σ (f x)
λf : (Πx : B.A′).λx : B.τ (f x)

)
A = B(

σ
τ

)
(ThECCE

Sbs )
ρA = ρB(

ρσ
ρτ

)
A = A′(

σ
τ

)
(ThECCE

ΣR )
Σx : B.A = Σx : B.A′(
λc : (Σx : B.A).(π1 c, σ (π2 c))
λc : (Σx : B.A′).(π1 c, τ (π2 c))

)



C Rules of RCoq

A
RCoq

−→
B if A

β−→ B (RCoq
β )

Σx : A.unit
RCoq

−→
A (RCoq

ΣUR)

Σx : (Σy : A.B).C RCoq

−→
Σx : A.Σy : B[y ← x].C[x← (x, y)] (RCoq

ΣAss)
Σx : unit.A

RCoq

−→
A[x← tt] (RCoq

ΣUL)

Πx : (Σy : A.B).C RCoq

−→
Πx : A.Πy : B[y ← x].C[x← (x, y)] (RCoq

ΣCur)
Πx : A.unit

RCoq

−→
unit (RCoq

ΠUR)

Πx : A.Σy : B.
RCoq

−→ C

Σy : (Πx : A.B).(Πx : A.C[y ← (y x)] (RCoq
ΠDis)

Πx : unit.A
RCoq

−→
A[x← tt] (RCoq

ΠUL)

A
RCoq

−→ A′
RCoq

Sbs
ρA

RCoq

−→ ρA′

A
RCoq

β−→ A′
RCoq

βΠL

Πx : A.B
RCoq

−→ Πx : A′.B

A
RCoq

−→ A′
RCoq

ΠR
Πx : B.A

RCoq

−→ Πx : B.A′

A
RCoq

β−→ A′
RCoq

βΣL

Σx : A.B
RCoq

−→ Σx : A′.B

A
RCoq

−→ A′
RCoq

ΣR
Σx : B.A

RCoq

−→ Σx : B.A′


